Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4
نویسندگان
چکیده
BACKGROUND Simultaneous wastewater treatment and lipid production by oleaginous microalgae show great potential to alleviate energy shortage and environmental pollution, because they exhibit tremendous advantages over traditional activated sludge. Currently, most research on wastewater treatment by microalgal are carried out at optimized temperature conditions (25-35 °C), but no information about simultaneous wastewater treatment and lipid production by microalgae at low temperatures has been reported. Microalgal growth and metabolism will be inhibited at low temperature conditions, and satisfactory wastewater treatment performance will be not obtained. Therefore, it is critical to domesticate and screen superior microalgal strains with low temperature adaptability, which is of great importance for wastewater treatment and biodiesel production. RESULTS In this work, simultaneous wastewater treatment and lipid production were achieved by a microalgal mutant Scenedesmus sp. Z-4 at the low temperature conditions (4, 10, and 15 °C). The results showed that algal growth was inhibited at 4, 10, and 15 °C compared to that at the optimal temperature of 25 °C. However, decreased temperature had no significant effect on the total cellular lipid content of algae. Importantly, lipid productivity at 10 °C was compromised by more net energy output relevant to biodiesel production, which demonstrated that the low temperature of 10 °C was favorable to wastewater treatment and energy recovery by Scenedesmus sp. Z-4. When molasses wastewater with optimal COD concentration of 8000 mg L-1, initial inoculation ratio of 15%, and C/N ratio of 15 was used to cultivate microalgae, the maximum removal rate of COD, TN, and TP at 10 °C reached 87.2, 90.5, and 88.6%, respectively. In addition, lipid content of 28.9% and lipid productivity of 94.4 mg L-1 day-1 were obtained. CONCLUSIONS Scenedesmus sp. Z-4 had good adaptability to low temperature conditions, and showed great potential to realize simultaneous wastewater treatment and lipid production at low temperatures. The proposed approach in the study was simple compared to other wastewater treatment methods, and this potential novel process was still efficient to remove COD, N, and P at low temperatures. Thus, it had a vital significance for the wastewater treatment in low temperature regions.
منابع مشابه
Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation
Background The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under aut...
متن کاملGrowth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature.
Microalgal lipid is a promising feedstock for biodiesel production. Effect of cultivation temperature on the growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. LX1 was studied. Scenedesmus sp. LX1 could grow in a wide range of temperature (10∼30°C), and the growth activation energy was 49.3 kJ·mol(-1). The optimal temperature to produce microalgal biomass and lip...
متن کاملSanitary Wastewater Supplemented with Glycerol to Obtain Lipid-Rich Microalgal Biomass
Introduction: Mixotrophic microalgae systems have great potential for bioenergy production and wastewater treatment. Anaerobic-treated wastewater supplemented with carbon can improve biomass yield and quality, as it presents low carbon content. Alternative carbon sources in microalgae cultivation, such as glycerol, are essential for minimizing the economic and environmental impacts caused by bi...
متن کاملGrowth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production.
Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tole...
متن کاملA cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.
Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017